Arduino Persistence of Vision Display
by Mr.What in Circuits > Arduino
32305 Views, 53 Favorites, 0 Comments
Arduino Persistence of Vision Display


A persistence of vision (PoV) display is a row of LED's that flash out columns of a message. When the array of LED's is moved, like when mounted on a bicycle wheel, the message can be read as if it were many LED's wide, instead of a single row.
The hardware setup for a PoV display is fairly straightforward, but this instructable contains code where the display can be controlled and programmed readily over the serial connection, and display settings can be saved so that they are automatically loaded and run when powered up from a battery.
You will want an Arduino AVR microcontroller board, such as an Uno, Nano, or mini. Around 10 LED's, and 10 resistors from about 100 to 220 ohms.
For our example, we will assume a 10 LED display. Wire the LED's in series with a resistor to digital I/O pins 3-10, and arrange them in a straight row.
Load the attached sketch.
From the serial monitor (or terminal emulator), type h to get the help menu. This will show several commands.
My Serial reader class compresses whitespace, so you will want to use . to represent "off" in the line settings. See the attached Quelab.dat sample line setting input file. The lines of this file can be cut and pasted into a terminal emulator to set the PoV message.
Once your desired display has been loaded, use the s) command to save its settings to EEPROM to be used at next reset.
The hardware setup for a PoV display is fairly straightforward, but this instructable contains code where the display can be controlled and programmed readily over the serial connection, and display settings can be saved so that they are automatically loaded and run when powered up from a battery.
You will want an Arduino AVR microcontroller board, such as an Uno, Nano, or mini. Around 10 LED's, and 10 resistors from about 100 to 220 ohms.
For our example, we will assume a 10 LED display. Wire the LED's in series with a resistor to digital I/O pins 3-10, and arrange them in a straight row.
Load the attached sketch.
From the serial monitor (or terminal emulator), type h to get the help menu. This will show several commands.
My Serial reader class compresses whitespace, so you will want to use . to represent "off" in the line settings. See the attached Quelab.dat sample line setting input file. The lines of this file can be cut and pasted into a terminal emulator to set the PoV message.
Once your desired display has been loaded, use the s) command to save its settings to EEPROM to be used at next reset.
int dummy=0; // this is to force sketch to put arduino include here #define MODE_UNKNOWN 0 #define MODE_PoV 1 #define MODE_RANDOM 2 #define MODE_CYLON 3 #define MAX_COLS 96 #define SERIAL_BUF_LEN (MAX_COLS+15) #include-------- ioUtil.hSerialLineBuffer LineBuf; struct { short nCols; // no. columns in buffer short spaceCols; // no. columns "space" time before repeat or reverse short mode; // MODE_ code from above short cylonCols; // no. cols of time for each cylon flash int colTime; // milliseconds/column int misc[3]; // reserved for future use short disp[MAX_COLS]; // display flags } State; // These are the DI/O pins used for the display #define NPINS 10 int ledPins[NPINS] = {12,11,10,9,8,7,6,5,4,3}; #include void loadState() { int n = sizeof(State); byte *bp = (byte *)(&State); for(int i=0; i < n; i++, bp++) *bp = EEPROM.read(i); if (!validState()) initState(); } void saveState() { int n = sizeof(State); byte *bp = (byte *)(&State); for(int i=0; i < n; i++, bp++) EEPROM.write(i,*bp); } // set state to a reasonable default void initState() { State.nCols = 2; State.spaceCols = 1; State.cylonCols = 10; State.mode = MODE_PoV; State.colTime = 10; // ms for (int i=0; i < MAX_COLS; i++) State.disp[i] = (i&1)?0x5555:0x2aaa; saveState(); } void setup() { int i; for (i=0;i
{ pinMode(ledPins[i],OUTPUT); } pinMode(13,OUTPUT); // use on-board LED // restore state from EEPROM loadState(); Serial.begin(9600); } void loop() { checkCommand(); int i,dt,k; dt = State.colTime; switch (State.mode) { case MODE_CYLON: dt *= State.cylonCols; for (i=0; i < NPINS; i++) { digitalWrite(ledPins[i],HIGH); delay(dt); digitalWrite(ledPins[(i+NPINS-1)%NPINS],LOW); delay(dt); } for (i=NPINS-2; i >= 0; i--) { digitalWrite(ledPins[i],HIGH); delay(dt); digitalWrite(ledPins[(i+1)%NPINS],LOW); delay(dt); } break; case MODE_PoV: for (i=0; i < State.nCols; i++) { short mask=1; for (k=0; k < NPINS; k++, mask <<= 1) digitalWrite(ledPins[k],(mask & State.disp[i])?HIGH:LOW); } for (k=0; k < NPINS; k++) digitalWrite(ledPins[k],LOW); delay(State.spaceCols*dt); break; default: // random default { dt *= 10; k = random(100); int lvl = (k<50)?LOW:HIGH; int j = random(NPINS); digitalWrite(ledPins[j],lvl); delay(dt); } } digitalWrite(13,digitalRead(13)?LOW:HIGH); // toggle heartbeat } // poll for commands from serial port void checkCommand() { short mask; if (!LineBuf.isComplete()) return; char key = lowCase(*(LineBuf.get())); switch(key) { //short mask; //int k; //char *b; case 'h' : Serial.println(" h) help (print this message)"); Serial.println(" s) save state"); Serial.println(" r) random lights mode"); Serial.println(" c) cylon mode"); Serial.println(" p) PoV sign mode"); Serial.println(" n) no. cols to display"); Serial.println(" t) col time, ms"); Serial.println(" b) blank cols between repeat"); Serial.println(" i) re-Initialize state"); Serial.print( " Lx) Set pattern for line x, 0<=x<="); Serial.println(NPINS); break; case 's' : saveState(); break; case 'r' : State.mode = MODE_RANDOM; break; case 'p' : State.mode = MODE_PoV; break; case 'c' : State.mode = MODE_CYLON; break; case 'i' : initState(); break; case 'n' : State.nCols =nextInt(LineBuf.get()+1); break; case 't' : State.colTime =nextInt(LineBuf.get()+1); break; case 'b' : State.spaceCols=nextInt(LineBuf.get()+1); break; case 'l' : { char *b = LineBuf.get()+1; int k = ((int)(*b)) - ((int)'0'); if ((k<0) || (k > 15)) break; b++; short mask = (short)(1<
for (int i=0; i < State.nCols; i++, b++) { if (isOn(*b)) State.disp[i] |= mask; else State.disp[i] &= ~mask; } break; } default : Serial.print("Unrecognized Command : <"); Serial.print(LineBuf.get()); Serial.println(">"); Serial.println("Send command h for help."); } printState(); printMsg(); } void printState() { Serial.print(State.nCols); Serial.print(" Columns "); Serial.print(State.spaceCols); Serial.print(" "); Serial.print(State.colTime); Serial.println("ms/col"); Serial.flush(); } void printMsg() { int i,k; Serial.println(); for (i=0; i < State.nCols; i++) Serial.print("-"); short mask=1; for(k=0; k < NPINS; k++, mask <= 1) { for (i=0; i < State.nCols; i++) Serial.print(State.disp[k]&mask?"X":" "); Serial.println("|"); } Serial.println(); for (i=0; i < State.nCols; i++) Serial.print("-"); Serial.println(); Serial.flush(); } // parse next int from a string int nextInt(const char *s) { const char *c = s; int val = 0; for(;;) { int k = ((int)(*c)) - ((int)'0'); if ((k<0)||(k>9)) return val; val *= 10; val += k; c++; } } bool isOn(const char c) { if ((c=='0') || (c=='.') || (c==' ') || (c==0)) return false; //if ((c=='1')||(lowCase(c)=='x')) return true; return true; } bool validState() { // check for silly state, set to default if inconsistent if ((State.mode <= 0) || (State.mode > 3) || (State.nCols< 1) || (State.nCols>MAX_COLS)) return false; if ((State.spaceCols < 1) || (State.spaceCols > 10*MAX_COLS)) return false; if ((State.colTime < 1) || (State.colTime > 10000)) return false; if ((State.cylonCols < 1) || (State.cylonCols > 10000)) return false; return true; }
class SerialLineBufferPrivates; class SerialLineBuffer { public: SerialLineBuffer(); //~SerialLineBuffer(); bool isComplete(); // reads from serial, return true if 0 or EOLN void clear(); void begin(); int length() const; int maxLength() const; char *get(); // retrieve current buffer and clear char buf[SERIAL_BUF_LEN+1]; protected: int _maxLength, _len; bool _complete; private: //class SerialLineBufferPrivates *Priv; }; char lowCase(const char a); int caseCmp(const char a0, const char b0); char *extractKey(char *cmdStr, char **val); bool keyMatch(const char *key, const char *key1);------------------------------- ioUtil.cpp
#include-------------------------------- Input data example#define NULL 0 // don't want to depend on ctype.h, just for this! bool isBlank(int c) { if(c == 7) return(false); // bell return( (c <= ' ') || (c > '~') ); } #if defined(ARDUINO) && ARDUINO >= 100 #include #warning ARDUINO #else #error ARDUINO not >= 100 #include #endif void SerialLineBuffer::begin() { _maxLength = SERIAL_BUF_LEN; // AVR dynamic mem is tricky _len = 0; _complete = false; } SerialLineBuffer::SerialLineBuffer() { begin(); } bool isTerminator(int c) { if (c == 0) return(true); if (c == ';') return(true); // sending \n to serial is tricky. accept this too. //if ((c=='\n') || (c=='\r') || (c=='\m')) return(true); if ((c>=10) && (c<=13)) return(true); // \r, \n, form feed, vert tab return(false); } /// read from serial, return true if 0 or EOLN bool SerialLineBuffer::isComplete() { if (_complete) return(true); // don't read more until this line is consumed // add characters from serial while(Serial.available() > 0) { int nextByte = Serial.read(); //Serial.print("Got ");Serial.println(nextByte); if ((nextByte < 0) || (nextByte >= 256)) return(_complete); if (isTerminator(nextByte)) { //Serial.print("terminator ");Serial.println(nextByte); buf[_len] = 0; _complete = (_len > 0); return(_complete); } if (isBlank(nextByte)) { //Serial.print("blank ");Serial.println(nextByte); if (_len > 0) // ignore leading whitespace { if (buf[_len-1] != ' ') // compact space to 1 space { buf[_len++] = ' '; // convert all space to ' ' } } } else { buf[_len++] = (char)nextByte; } // don't allow overflow if (_len >= _maxLength) { Serial.println("\nOverflow. truncating command string"); _complete = true; } } return(_complete); } void SerialLineBuffer::clear() { _len = 0; _complete = false; } int SerialLineBuffer::length() const { return(_len); } int SerialLineBuffer::maxLength() const { return(_maxLength); } /// retrieve current buffer and clear char *SerialLineBuffer::get() { buf[_len]=0; clear(); return(buf); } //----------------------------------------------------------- /// split a keyword-value pair string into a key string and value string const char nullChar = 0; // static is scary on AVR char *extractKey(char *cmdStr, char **val) { *val = (char *)&nullChar; if (cmdStr == NULL) return(NULL); char *key = cmdStr; while (*key) // process comments { if (*key == '#') *key=0; // comment else key++; } key = cmdStr; while(*key && isBlank(*key)) key++; // trim leading space *val = key; while(**val && !isBlank(**val)) *val += 1; // skip key **val = 0; *val += 1; while(**val && isBlank(**val)) *val += 1; // skip whitespace return(key); } char lowCase(const char a) { if ((a >= 'A') && (a <= 'Z')) { int sft = ((int)'a') - ((int)'A'); int b = (int)a + sft; return((char)b); } return(a); } int caseCmp(const char a0, const char b0) { char a = lowCase(a0); char b = lowCase(b0); if (a < b) return(-1); return((a>b)?1:0); } bool keyMatch(const char *key0, const char *key1) { //Serial.print("keyMatch(");Serial.print(key0);Serial.print(",");Serial.print(key1);Serial.print(")="); while(*key0 || *key1) { if (caseCmp(*key0, *key1)) { //Serial.println("false"); return(false); } if (*key0) key0++; if (*key1) key1++; } //Serial.println("true"); return(true); }
L0..Q.............l......b.... L1.QQQ............l......b.... L2Q...Q...........l......b.... L3Q...Q.u..u..ee..l..a.a.b.b.. L4Q...Q.u..u.e..e.l.a.aa.bb.b. L5Q...Q.u..u.e..e.l.a..a.b..b. L6Q.Q.Q.u..u.eeee.l.a..a.b..b. L7Q..Q..u..u.e....l.a..a.b..b. L8.Q.Q..u..u.e..e.l.a.aa.bb.b. L9.QQ.Q..uu...ee..l..a.a.b.b..